Part Number Hot Search : 
TPM754A EF68A40 LS5022 74CBT AMC715 30GT60BR BD5349 MAX16054
Product Description
Full Text Search
 

To Download IRF7832PBF-1 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  hexfet   power mosfet notes   through  are on page 10 applications  synchronous mosfet for notebook processor power  synchronous rectifier mosfet for isolated dc-dc converters in networking systems top view 8 1 2 3 4 5 6 7 d d d d g s a s s a so-8 absolute maximum ratings parameter units v ds drain-to-source voltage v v gs gate-to-source voltage i d @ t a = 25c continuous drain current, v gs @ 10v i d @ t a = 70c continuous drain current, v gs @ 10v a i dm pulsed drain current p d @t a = 25c power dissipation w p d @t a = 70c power dissipation linear derating factor w/c t j operating junction and c t stg storage temperature range thermal resistance parameter typ. max. units r jl junction-to-drain lead ??? 20 c/w r ja junction-to-ambient  ??? 50 -55 to + 155 2.5 0.02 1.6 max. 20 16 160 20 30 
 form quantity tube/bulk 95 IRF7832PBF-1 tape and reel 4000 irf7832trpbf-1 package type standard pack orderable part number IRF7832PBF-1 so-8 base part number features benefits industry-standard pinout so-8 package ? multi-vendor compatibility compatible with existing surface mount techniques easier manufacturing rohs compliant, halogen-free environmentally friendlier msl1, industrial qualification increased reliability v ds 30 v r ds(on) max (@v gs = 10v) 4.0 q g (typical) 34 nc i d (@t a = 25c) 20 a m   
  
       
  ! 

  
  
       
  !  s d g static @ t j = 25c (unless otherwise specified) parameter min. typ. max. units bv dss drain-to-source breakdown voltage 30 ??? ??? v ? () ??? 3.7 4.8 v gs(th) gate threshold voltage 1.39 ??? 2.32 v () a ??? ??? 150 i gss gate-to-source forward leakage ??? ??? 100 na gate-to-source reverse leakage ??? ??? -100 gfs forward transconductance 77 ??? ??? s q g total gate charge ??? 34 51 q gs1 pre-vth gate-to-source charge ??? 8.6 ??? q gs2 post-vth gate-to-source charge ??? 2.9 ??? nc q gd gate-to-drain charge ??? 12 ??? q godr gate charge overdrive ??? 10.5 ??? see fig. 16 q sw switch charge (q gs2 + q gd ) ??? 14.9 ??? q oss output charge ??? 23 ??? nc r g gate resistance ??? 1.2 2.4 () () avalanche characteristics parameter units e as single pulse avalanche energy mj i ar avalanche current  a diode characteristics parameter min. typ. max. units i s continuous source current ??? ??? 3.1 (body diode) a i sm pulsed source current ??? ??? 160 (body diode)  v sd diode forward voltage ??? ??? 1.0 v t rr reverse recovery time ??? 41 62 ns q rr reverse recovery charge ??? 39 59 nc t on forward turn-on time intrinsic turn-on time is negligible (turn-on is dominated by ls+ld) ??? i d = 16a v gs = 0v v ds = 15v v gs = 4.5v, i d = 16a  v gs = 4.5v typ. ??? v ds = v gs , i d = 250 a clamped inductive load v ds = 15v, i d = 16a v ds = 24v, v gs = 0v, t j = 125c t j = 25c, i f = 16a, v dd = 10v di/dt = 100a/ s  t j = 25c, i s = 16a, v gs = 0v  showing the integral reverse p-n junction diode. mosfet symbol v ds = 16v, v gs = 0v v dd = 15v, v gs = 4.5v i d = 16a v ds = 15v v gs = 20v v gs = -20v v ds = 24v, v gs = 0v conditions v gs = 0v, i d = 250 a reference to 25c, i d = 1ma v gs = 10v, i d = 20a  conditions max. 260 16 ? = 1.0mhz

   
  
       
  !  fig 4. normalized on-resistance vs. temperature fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics 0.1 1 10 100 1000 v ds , drain-to-source voltage (v) 0.01 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 2.25v 20 s pulse width tj = 25c vgs top 10v 5.0v 4.5v 3.5v 3.0v 2.7v 2.5v bottom 2.25v 2.0 2.5 3.0 3.5 4.0 v gs , gate-to-source voltage (v) 0 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( ) t j = 25c t j = 150c v ds = 15v 20 s pulse width 0.1 1 10 100 1000 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 2.25v 20 s pulse width tj = 150c vgs top 10v 5.0v 4.5v 3.5v 3.0v 2.7v 2.5v bottom 2.25v -60 -40 -20 0 20 40 60 80 100 120 140 160 t j, junction temperature (c ) 0.0 0.5 1.0 1.5 2.0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 16a v gs = 4.5v

 "  
  
       
  !  fig 8. maximum safe operating area fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage fig 7. typical source-drain diode forward voltage 1 10 100 v ds , drain-to-source voltage (v) 100 1000 10000 100000 c , c a p a c i t a n c e ( p f ) v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd c oss c rss c iss 0 1020304050 q g total gate charge (nc) 0 1 2 3 4 5 6 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 24v v ds = 15v i d = 16a 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 v sd , source-to-drain voltage (v) 0.1 1 10 100 1000 i s d , r e v e r s e d r a i n c u r r e n t ( ) v gs = 0v t j = 150c t j = 25c 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25c tj = 150c single pulse 1msec 10msec 100 sec

 #  
  
       
  !  fig 11. maximum effective transient thermal impedance, junction-to-ambient fig 9. maximum drain current vs. case temperature fig 10. threshold voltage vs. temperature 25 50 75 100 125 150 t c , case temperature (c) 0 4 8 12 16 20 24 i d , d r a i n c u r r e n t ( a ) 1e-006 1e-005 0.0001 0.001 0.01 0.1 1 10 100 t 1 , rectangular pulse duration (sec) 0.01 0.1 1 10 100 t h e r m a l r e s p o n s e ( z t h j a ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) -60 -40 -20 0 20 40 60 80 100 120 140 160 t j , temperature (c) 0.5 1.0 1.5 2.0 2.5 v g s ( t h ) , g a t e t h r e s h o l d v o l t a g e ( v ) i d = 250 a

 $  
  
       
  !  fig 13. maximum avalanche energy vs. drain current 25 50 75 100 125 150 starting t j , junction temperature (c) 0 100 200 300 400 500 600 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top 7.0a 13a bottom 16a fig 16. switching time test circuit fig 17. switching time waveforms fig 12. on-resistance vs. gate voltage d.u.t. v ds i d i g 3ma v gs .3 f 50k .2 f 12v current regulator same type as d.u.t. current sampling resistors + - fig 15. gate charge test circuit fig 14. unclamped inductive test circuit and waveform t p v (br)dss i as r g i as 0.01 t p d.u.t l v ds + - v dd driver a 15v 20v vgs v gs pulse width < 1 s duty factor < 0.1% v dd v ds l d d.u.t + - v gs v ds 90% 10% t d(on) t d(off) t r t f 2 3 4 5 6 7 8 9 10 v gs , gate -to -source voltage (v) 0 2 4 6 8 10 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( m ) i d = 20a t j = 125c t j = 25c

 %  
  
       
  !  fig 18. 
  

  for n-channel hexfet   power mosfets 
 
  ?  
 
  ?   
  ?  

 
   
  p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-applied voltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period  &  '#&
(
) (     + - + + + - - -      &  ?      ? 
 !
"#"" ?       $
 %% ? "#""&#    fig 19. gate charge waveform vds vgs id vgs(th) qgs1 qgs2 qgd qgodr

 *  
  
       
  !  control fet 
  





 
 

  
  





 
  





 

 
  

!"# 

  
$

% 

 &'!"#


  


$
  
 



  



 
 


 $( p loss = p conduction + p switching + p drive + p output this can be expanded and approximated by; p loss = i rms 2 r ds(on ) ( ) + i q gd i g v in f ? ? ? ? ? ? + i q gs 2 i g v in f ? ? ? ? ? ? + q g v g f () + q oss 2 v in f ? ? ? ? #
 

) 
  


   
 




 
&'!"#
 
   



 

  
   


  


&'!"#
 
  #
   

   

  
 


  
 

 
  



  !
*  
  





 
$ 
 

 




   



 




 


+ 





 
  

 
& , 
 


 
 
  
  


  






 


  
  


&'!"#
 
$
   
$ 
!
-
 
 
 

 
$
  
   


 
 
.   /
   0

 


  
$ 
 
 $
 

  synchronous fet the power loss equation for q2 is approximated by; p loss = + + = i rms 2 r ds(on) () + q g v g f () + q oss 2 v in f ? ? ? ? ? + q rr v in f ( ) *dissipated primarily in q1. for the synchronous mosfet q2, r ds(on) is an im- portant characteristic; however, once again the im- portance of gate charge must not be overlooked since it impacts three critical areas. under light load the mosfet must still be turned on and off by the con- trol ic so the gate drive losses become much more significant. secondly, the output charge q oss and re- verse recovery charge q rr both generate losses that are transfered to q1 and increase the dissipation in that device. thirdly, gate charge will impact the mosfets? susceptibility to cdv/dt turn on. the drain of q2 is connected to the switching node of the converter and therefore sees transitions be- tween ground and v in . as q1 turns on and off there is a rate of change of drain voltage dv/dt which is ca- pacitively coupled to the gate of q2 and can induce a voltage spike on the gate that is sufficient to turn the mosfet on, resulting in shoot-through current . the ratio of q gd /q gs1 must be minimized to reduce the potential for cdv/dt turn on. power mosfet selection for non-isolated dc/dc converters figure a: q oss characteristic

 +  
  
       
  !  so-8 package details so-8 part marking e1 d e y b a a1 h k l .189 .1497 0 .013 .050 b as ic .0532 .0040 .2284 .0099 .016 .1968 .1574 8 .020 .0688 .0098 .2440 .0196 .050 4.80 3.80 0.33 1.35 0.10 5.80 0.25 0.40 0 1.27 bas ic 5.00 4.00 0.51 1.75 0.25 6.20 0.50 1.27 mi n max mil l ime t e r s inches mi n max dim 8 e c .0075 .0098 0.19 0.25 .025 basic 0.635 b asic 87 5 65 d b e a e 6x h 0.25 [.010] a 6 7 k x 45 8x l 8x c y 0.25 [.010] cab e1 a a1 8x b c 0.10 [.004] 4 3 12 f oot p r i nt 8x 0.72 [.028] 6.46 [.255] 3x 1.27 [.050] 4. ou t l i ne conf or ms t o j e de c ou t l i ne ms - 012 aa. not e s : 1. dimens ioning & tolerancing per asme y14.5m-1994. 2. cont rol l ing dime ns ion: mil l ime t e r 3. dime ns ions are s hown in mil l ime t e rs [inche s ]. 5 dime ns ion doe s not incl u de mol d pr ot ru s ions . 6 dime ns ion doe s not incl u de mol d pr ot ru s ions . mold protrus ions not to exceed 0.25 [.010]. 7 dimens ion is t he lengt h of lead for soldering to a s ubst rat e. mold protrus ions not to exceed 0.15 [.006]. 8x 1.78 [.070] p = disgnates lead - free example: t his is an irf7101 (mosfet) f 7101 xxxx int ernational logo rectifier part number lot code product (optional) dat e code (yww) y = l as t digit of t he ye ar ww = we e k a = assembly site code note: for the most current drawing please refer to ir website at http://www.irf.com/package/

   
  
       
  !  
  repetitive rating; pulse width limited by max. junction temperature.   starting t j = 25c, l = 2.0mh, r g = 25 , i as = 16a.   pulse width 400 s; duty cycle 2%. 
when mounted on 1 inch square copper board. 330.00 (12.992) max. 14.40 ( .566 ) 12.40 ( .488 ) notes : 1. controlling dimension : millimeter. 2. outline conforms to eia-481 & eia-541. feed direction terminal number 1 12.3 ( .484 ) 11.7 ( .461 ) 8.1 ( .318 ) 7.9 ( .312 ) notes: 1. controlling dimension : millimeter. 2. all dimensions are shown in millimeters(inches). 3. outline conforms to eia-481 & eia-541. so-8 tape and reel note: for the most current drawing please refer to ir website at http://www.irf.com/package/ ? qualification standards can be found at international rectifier?s web site: http://www.irf.com/product-info/reliability ?? applicable version of jedec standard at the time of product release ms l 1 (per je de c j-s t d-020d ?? ) rohs c ompliant yes qualification information ? qualification level industrial (per jedec jesd47f ?? guidelines) moisture sensitivity level so-8 ir world headquarters: 101 n. sepulveda blvd., el segundo, california 90245, usa to contact international rectifier, please visit http://www.irf.com/whoto-call/


▲Up To Search▲   

 
Price & Availability of IRF7832PBF-1

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X